

CMSC201 Computer Science I for Majors

Lecture 22 – Searching

All materials copyright UMBC unless otherwise noted

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Welcome Back!

Review: Tuples & Dictionaries

- Create an empty tuple
- Create a dictionary that contains three different (key, value) pairs, similar to "a is for apple"
 - Add one additional (key, value) pair
 - Update one of your (key, value) pairs
 - Remove one of your (key, value) pairs
- Why must dictionary keys be unique?
- Do values need to be unique?

Review: Matching Symbols

 Match the following data types to the symbols needed to create them (may be more than one)

Review: Matching Symbols

 Match the following data types to the symbols needed to create them (may be more than one)

Review: Mutability

• Which of the following are mutable data types?

Boolean	???
Dictionary	???
Float	???
Integer	???
List	???
String	???
Tuple	???

Review: Mutability

• Which of the following are mutable data types?

Boolean	Immutable
Dictionary	Mutable
Float	Immutable
Integer	Immutable
List	Mutable
String	Immutable
Tuple	Immutable

Review: Implementation

You are given a dictionary of the NATO phonetic alphabet, in the form:
 ALPHA = {"A" : "Alpha", "B" : "Bravo", "C" : "Charlie", ... etc.}

• Write a function to convert a string from the user into its phonetic code words

- You only need to handle letters (case insensitive)

Review: Implementation Example

• Here is an example of how it should work:

Please enter a word: EXAMPLE The word "EXAMPLE" becomes "Echo X-ray Alpha Mike Papa Lima Echo"

Please enter a word: dogmeat The word "dogmeat" becomes "Delta Oscar Golf Mike Echo Alpha Tango" AN HONORS UNIVERSITY IN MARYLAND

Any questions about the material we just reviewed?

Today's Objectives

- To learn more about searching algorithms
 - Linear search
 - Binary search

UMBC

AN HONORS UNIVERSITY IN MARYLAND

Search

www.umbc.edu

Motivations for Searching

Want to know <u>if</u> something exists
 – Python can do this for us!

- Want to know <u>where</u> something exists
 Python can actually do this for us too!
 - raceWinners.index(718)
- But <u>how</u> does Python does this?

Exercise: find()

- Write a function that takes a list and a variable and returns the index of the variable in the list
 - -If it's not found, return -1
 - -You can't use index()!
 - def find(searchList, var)

Exercise: find() Solution

def find(searchList, var):
 for i in range(len(searchList)):
 if searchList[i] == var:
 return i

outside the loop, means that
we didn't find the variable
return -1

Linear Search

• You just programmed up a search function!

- This algorithm is called *linear search*
- It's a common, fundamental algorithm in CS
- It's especially useful when our information isn't in a sorted order
 - But it isn't very fast

Searching Sorted Information

- Now, imagine we're looking for information in something sorted, like a phone book
- We know someone's name (it's our "variable"), and want to find their number in the book
- What is a good method for locating their phone number?
 - -Think about how you would do this.

Algorithm in English

- Open the book midway through.
 - If the person's name is **on** the page you opened to
 - You're done!
 - If the person's name is after the page you opened to
 - Tear the book in half, throw the <u>first half</u> away and repeat this process on the second half
 - If the person's name is **before** the page you opened to
 - Tear the book in half, throw the <u>second half</u> away and repeat this process on the first half
- This is rough on the phone book, but you'll find the name!

AN HONORS UNIVERSITY IN MARYLAND

Binary Search

Binary Search

- The algorithm we just demonstrated is better known as *binary search*
 - We talked about it briefly last class, remember?
- Binary search is only usable on <u>sorted</u> lists – Why?

Solving Binary Search

- Binary search is a problem that can be broken down into
 - Something simple (breaking a list in half)
 - A smaller version of the original problem (searching that half of the list)

• That means we can use ... recursion!

Exercise: Recursive Binary Search

- Write a recursive binary search!
- To make the problem slightly easier, make it "checking to see <u>if</u> something is in a sorted list"
 - If there's no "middle" of the list, we'll just look at the lower of the two "middle" indexes

Exercise: Recursive Binary Search

- Write a recursive binary search!
- Remember to ask yourself:
 - What is our base case(s)?
 - What is the recursive step?

def binarySearch(myList, item):

A hint: in order to get the number at the middle of the list, use this line:
 myList[len(myList) // 2]

AN HONORS UNIVERSITY IN MARYLAND

UMBC

Time for...

LIVECODING!!!

Announcements

- Final is Thursday, December 15th (3:30 5:30)
- Project 2 will come out soon

- The third survey will be announced on Blackboard shortly (0.5% of your grade)
 - Not on Blackboard
 - TA Feedback; anonymous to the TAs